8. [10 points] Scientists are continuing their study of water temperature at a certain location in Lake Michigan using their underwater drone.

- Let $W(p)$ be the temperature, in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$, of the water at a depth of p feet.
- Let $T(p)$ be the time, in minutes, that it takes for the drone to descend to a depth of p feet.

Assume that both of these functions are invertible and differentiable.
a. [2 points] Write a single equation representing the following statement in terms of the functions W, T, and/or their inverses:

It takes the drone 3 minutes to reach water with a temperature of $5.7^{\circ} \mathrm{C}$.

Answer:

b. [3 points] Complete the following sentence to give a practical interpretation of the equation

$$
W^{\prime}(50)=-0.2
$$

Compared to the water at a depth of 50 feet, the water at a depth of 53 feet...
c. [3 points] Use a complete sentence to give a practical interpretation of the equation

$$
\int_{50}^{65} T^{\prime}(p) d p=1
$$

d. [2 points] Which of the following expressions gives the average temperature, in ${ }^{\circ} \mathrm{C}$, of the water outside of the drone during the first 5 minutes of its descent? Circle the one correct answer.
i. $\frac{1}{5} \int_{0}^{5} W(p) d p$
iv. $\frac{W\left(T^{-1}(5)\right)-W\left(T^{-1}(0)\right)}{5}$
ii. $\frac{1}{5} \int_{0}^{5} W\left(T^{-1}(t)\right) d t$
v. $\frac{W(T(5))+W(T(0))}{2}$
iii. $\frac{1}{5} \int_{0}^{5} W^{\prime}(T(t)) \cdot T^{\prime}(t) d t$
vi. $\frac{T\left(W^{-1}(5)\right)-T\left(W^{-1}(0)\right)}{5}$

