

Recall that the volume of a cone with radius r and height h is $\frac{1}{3} \pi r^{2} h$, while the volume of a circular cylinder with radius R and height H is $\pi R^{2} H$.

At the moment in time when the height of the coffee in the filter is 5 inches, the coffee is draining from the filter at a rate of 10 cubic inches per minute.

a. [5 points] At what rate is the height of the coffee in the filter decreasing at that moment? Include units.

Solution: Let V be the volume of coffee in the filter, so

$$
V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} h=\frac{1}{12} \pi h^{3}
$$

Differentiating with respect to t, we get

$$
\frac{d V}{d t}=\frac{1}{4} \pi h^{2} \frac{d h}{d t}
$$

Since $\frac{d V}{d t}=-10$ and $h=5$, this means

$$
-10=\frac{1}{4} \pi(5)^{2} \frac{d h}{d t}, \quad \text { so } \quad \frac{d h}{d t}=\frac{-40}{25 \pi}=\frac{-8}{5 \pi}
$$

Thus the height of the coffee is decreasing at a rate of $\frac{8}{5 \pi}$ inches per minute.

Answer: \qquad
b. [4 points] At what rate is the height of the coffee in the pot increasing at that moment? Include units.

Solution: Let V be the volume and H the height of coffee in the pot, so

$$
V=\pi \cdot 3^{2} H=9 \pi H .
$$

Differentiating with respect to t, we get

$$
\frac{d V}{d t}=9 \pi \frac{d H}{d t}
$$

so

$$
\frac{d H}{d t}=\frac{10}{9 \pi} .
$$

Thus the height of coffee in the pot is increasing at a rate of $\frac{10}{9 \pi}$ inches per minute.
\qquad

