7. [9 points] Consider the family of functions

$$
m(x)=x+\frac{c^{2}}{x}
$$

defined for $x>0$, where c is a positive constant.
Throughout this problem, use calculus to find your answers, show all your work, and be sure to show enough evidence to justify your conclusions.
a. [2 points] Any function in this family has only one critical point on its domain $x>0$. In terms of c, what is the x-coordinate of this critical point?
Solution: $\quad m^{\prime}(x)=1-\frac{c^{2}}{x^{2}}$.
$m^{\prime}(x)$ DNE at $x=0$ which is not in the domain.
$m^{\prime}(x)=0$ at $x=c$ which is in the domain.
Answer: $\quad c$ or $x=c$
b. [3 points] Is the critical point a local minimum, a local maximum, neither, or is there not enough information to decide? Circle your answer below.

Solution:

For the $1^{\text {st }}$ derivative test: $m^{\prime}\left(\frac{c}{2}\right)=1-4 \frac{c^{2}}{c^{2}}=-3<0$ and $m^{\prime}(2 c)=1-\frac{c^{2}}{4 c^{2}}=\frac{3}{4}>0$. Therefore $x=c$ is a local min.
For the $2^{\text {nd }}$ derivative test: $m^{\prime \prime}(x)=0+2 \frac{c^{2}}{x^{3}}$ and $m^{\prime \prime}(c)=\frac{2}{c}>0$. Therefore $x=c$ is a local min.

Answer: local min local max neither not enough info
c. [2 points] Find the x-coordinates of all inflection points of $m(x)$, or if there are none, write NONE.

Solution: $\quad m^{\prime \prime}(x)=0+2 \frac{c^{2}}{x^{3}}$ which is defined everywhere in the domain and not equal to zero on the domain. Therefore $m(x)$ has no inflection points.

Answer: Inflection point(s) at $x=$ \qquad
d. [2 points] Find the value for c such that $m(x)=10$ at its critical point.

Solution: The value at $x=c$ is $m(c)=c+\frac{c^{2}}{c}=2 c$. If it is equal to 10 , then $2 c=10$, or $c=5$.

$$
\text { Answer: } \quad c=\begin{aligned}
& 5 \\
& \hline
\end{aligned}
$$

