9. [12 points] A function $p(x)$ is continuous on $(-\infty, \infty)$. Part of its derivative $p^{\prime}(x)$ is shown below.

a. [2 points] At which of the following x-value(s) does $p(x)$ have a critical point?
-8
-3
-2
1
7
b. [2 points] At which of the following x-value(s) does $p(x)$ have a local minimum?
-8
-4
-3
0
3
c. [2 points] On which of the following interval(s) is $p(x)$ increasing on the entire interval?

$$
(-4,-3) \quad(-3,0)
$$

$(3,7)$
d. [2 points] On which of the following interval(s) is $p(x)$ concave up on the entire interval?

$$
\begin{equation*}
(-5,-3) \tag{7,9}
\end{equation*}
$$

$$
(0,1)
$$

$$
(3,7)
$$

e. [2 points] On which of the following interval(s) is the product $p^{\prime}(x) \cdot p^{\prime \prime}(x)$ negative on the entire interval?

$$
\begin{equation*}
(-5,-4) \quad(-2,0) \quad(1,3) \tag{3,5}
\end{equation*}
$$

f. [2 points] At which of the following x-value(s) does $p(x)$ have both a local extremum and an inflection point?
-7 -5
-3
0
3
NONE OF THESE

