8. [11 points] Consider the family of functions $f(x)=x^{4} e^{-c x}$, where $c>0$. Note that

$$
f^{\prime}(x)=x^{3} e^{-c x}(4-c x) \quad \text { and } \quad f^{\prime \prime}(x)=c^{2} x^{2} e^{-c x}\left(x-\frac{2}{c}\right)\left(x-\frac{6}{c}\right) .
$$

a. [2 points] List all the critical points of $f(x)$ and $f^{\prime}(x)$, in terms of c. No justification necessary.

Answer: Critical points of $f(x)$: \qquad . Critical points of $f^{\prime}(x)$: \qquad .
b. [4 points] Determine, in terms of the parameter c, the intervals of concavity of the function $f(x)$. Use calculus to find your answers, show all your work, and be sure to show enough evidence to justify your conclusions.

Answer: Intervals on which $f(x)$ is concave up: \qquad

Answer: Intervals on which $f(x)$ is concave down: \qquad
c. [2 points] Circle the x-coordinates of all inflection points of $f(x)$ in terms of the parameter c that are listed below, or, if no inflection points of $f(x)$ are listed below, circle NONE.
0
$e^{-c} \quad e^{c}$
$\frac{2}{c}$
$\frac{4}{c}$
$\frac{6}{c}$
NONE
d. [3 points] For each $c>0$, the function $y=f(x)$ has exactly one local extremum in $(0, \infty)$.
i. Find the unique value of c such that $f(x)$ has a local extreme value of $y=1$ in the interval $(0, \infty)$. Show your work.

Answer: $c=$ \qquad
ii. Is the local extremum of $f(x)$ in $(0, \infty)$ a max or a min? Circle your answer: max min (No justification is necessary.)

