4. [6 points] The expressions below define five different functions of x, labeled i. - v., which are used for answers in parts \mathbf{a}. and \mathbf{b}.
i. $\frac{x^{2}+1}{x-3}$
ii. $\frac{x^{2}-1}{x^{3}-8}$
iii. $\frac{x}{e^{x}}$
iv. $\frac{e^{x}}{x}$
v. $\frac{(x-2)^{1 / 3}}{x}$
a. [2 points] Which of the above functions have a limit of 0 as $x \rightarrow \infty$? Circle all correct answers.
i.
ii.
iii.
iv.
v.
NONE OF THESE
b. [2 points] Which of the above functions satisfy the hypotheses of the Mean Value Theorem on the interval $[1,3]$? Circle all correct answers.
i.
ii.
iii.
iv.
v.
NONE OF THESE
c. [2 points] Circle the one correct equality below to complete the statement of the Mean Value Theorem applied to the function $f(x)=e^{x} / x$ on the interval [1,3]:
"There is a point c in the interval $(1,3)$ such that \ldots "

$$
\frac{x e^{x}-e^{x}}{x^{2}}=\frac{\frac{1}{3} e^{c}-e}{2} \quad \frac{c e^{c}-e^{c}}{c^{2}}=\frac{e^{3}}{9} \quad \frac{e^{c}}{c}=\frac{\frac{1}{3} e^{3}-e}{3-1} \quad \frac{e^{c}(c-1)}{c^{2}}=\frac{e^{3}}{6}-\frac{e}{2}
$$

5. [5 points] Find the global maximum and minimum output values of the function

$$
y=w(x)=3-2 x^{2}+\frac{x^{4}}{2}
$$

on the interval $[-1,2]$, and list all x-values at which the global maximum and minimum occur. Show all your work, and use calculus to justify your answers, which should be numerical.

Solution: First we find the critical points of $w(x)$. Since $w(x)$ is differentiable everywhere, in order to find the critical points we just have to solve $w^{\prime}(x)=0$. We have

$$
w^{\prime}(x)=-4 x+2 x^{3}=2 x\left(x^{2}-2\right)=2 x(x-\sqrt{2})(x+\sqrt{2})
$$

Thus the critical points of $w(x)$ are $x=0, \pm \sqrt{2}$. Now we evaluate $w(x)$ at the endpoints of $[-1,2]$, and at its critical points that belong to $[-1,2]$. We have

$$
w(-1)=\frac{3}{2}, \quad w(0)=3, \quad w(\sqrt{2})=1, \quad w(2)=3 .
$$

The greatest of these values is the maximum of $w(x)$ on $[-1,2]$, and the least is the minimum. So, on the interval $[-1,2], w(x)$ has a max of $y=3$ which occurs at $x=0$ and $x=2$, and a min of $y=1$ which occurs at $x=\sqrt{2}$.

Answer: On the interval $[-1,2]$, the function $w(x)$ has a \ldots
global maximum value of $y=\underline{3}$, occuring at the point(s) $x=\underline{0,2}$,
and a global minimum value of $y=$ \qquad , occuring at the point(s) $x=$ \qquad .

