8. [11 points] Consider the family of functions $f(x)=x^{4} e^{-c x}$, where $c>0$. Note that

$$
f^{\prime}(x)=x^{3} e^{-c x}(4-c x) \quad \text { and } \quad f^{\prime \prime}(x)=c^{2} x^{2} e^{-c x}\left(x-\frac{2}{c}\right)\left(x-\frac{6}{c}\right) .
$$

a. [2 points] List all the critical points of $f(x)$ and $f^{\prime}(x)$, in terms of c. No justification necessary.

Answer: Critical points of $f(x): \quad 0, \frac{4}{c}$. Critical points of $f^{\prime}(x): \quad 0, \frac{2}{c}, \frac{6}{c}$.
b. [4 points] Determine, in terms of the parameter c, the intervals of concavity of the function $f(x)$. Use calculus to find your answers, show all your work, and be sure to show enough evidence to justify your conclusions.

Solution: The function $f(x)$ will be concave up on intervals where $f^{\prime \prime}(x)>0$, and concave down on intervals where $f^{\prime \prime}(x)<0$. Noting that $f^{\prime \prime}(x)=0$ at $x=0, \frac{2}{c}, \frac{6}{c}$, we will make a sign chart for $f^{\prime \prime}(x)$ where we break up our number line at these three points and determine the sign of $f^{\prime \prime}(x)$ in each of the resulting intervals. Note that $c^{2} x^{2} e^{-c x}>0$ for all $x \neq 0$, and that $\left(x-\frac{2}{c}\right)>0$ when $x>\frac{2}{c}$, while $\left(x-\frac{6}{c}\right)>0$ when $x>\frac{6}{c}$. This gives us the table of signs:

	$(-\infty, 0)$	$\left(0, \frac{2}{c}\right)$	$\left(\frac{2}{c}, \frac{6}{c}\right)$	$\left(\frac{6}{c}, \infty\right)$
$c^{2} x^{2} e^{-c x}$	+	+	+	+
$\left(x-\frac{2}{c}\right)$	-	-	+	+
$\left(x-\frac{6}{c}\right)$	-	-	-	+
$f^{\prime \prime}(x)$	+	+	-	+

Or, equivalently, the following sign chart:

Answer: Intervals on which $f(x)$ is concave up: \qquad
Answer: Intervals on which $f(x)$ is concave down: $\left(\frac{2}{c}, \frac{6}{c}\right)$
c. [2 points] Circle the x-coordinates of all inflection points of $f(x)$ in terms of the parameter c that are listed below, or, if no inflection points of $f(x)$ are listed below, circle nONE.

$0 \quad e^{-c} \quad e^{c} \quad$| $\frac{2}{c}$ |
| :---: |

$\frac{4}{c}$
NONE
d. [3 points] For each $c>0$, the function $y=f(x)$ has exactly one local extremum in $(0, \infty)$.
i. Find the unique value of c such that $f(x)$ has a local extreme value of $y=1$ in the interval $(0, \infty)$. Show your work.

Solution: We are given that $f(x)$ has exactly one local extremum in $(0, \infty)$, so this extremum must occur at the only critical point $f(x)$ has in $(0, \infty)$, namely $x=\frac{4}{c}$. So we set $f\left(\frac{4}{c}\right)=1$ and solve for c. We get

$$
1=f\left(\frac{4}{c}\right)=\left(\frac{4}{c}\right)^{4} e^{-4}, \quad \text { so } \quad e^{4}=\left(\frac{4}{c}\right)^{4}, \quad \text { which means } \quad e=\frac{4}{c} .
$$

It follows that $c=\frac{4}{e}$. Since $f^{\prime \prime}\left(\frac{4}{c}\right)<0$, this is a local MAX by the Second Derivative Test.
Answer: $c=$ \qquad
ii. Is the local extremum of $f(x)$ in $(0, \infty)$ a max or a min? Circle your answer: MAX min (No justification is necessary.)

