1. [13 points] Given below is a table of values for the **decreasing** function H(w) and its derivative, H'(w). Suppose the functions H(w), H'(w), and H''(w) are all defined and continuous on $(-\infty, \infty)$.

w	0	1	2	3	4	5	6	7	8	9	10
H(w)	15	13	12	10	9	7	6	5	3	1	0
H'(w)	0	-1	-5	-3	-3	-2	-1	0	-1	0	-2

a. [3 points] Use a right-hand Riemann sum with **five** equal subdivisions to estimate $\int_0^{10} H(w) dw$. Write out all the terms in your sum. You do not need to simplify, but your answer should not include the letter H.

b. [1 point] Does the answer to part **a.** overestimate, underestimate, or equal the value of $\int_0^{10} H(w) dw$? Circle your answer. If there is not enough information, circle NEI. You do not need to show any work for this part of the problem.

Answer: OVERESTIMATE UNDERESTIMATE EQUAL NEI

c. [2 points] How many equal subdivisions of [0, 10] are needed so that the difference between the left and right Riemann sum approximations of $\int_0^{10} H(w) dw$ is exactly 1.5?

Answer:

Given below is a table of values for the **decreasing** function H(w) and its derivative, H'(w). Suppose the functions H(w), H'(w), and H''(w) are all defined and continuous on $(-\infty, \infty)$.

w	0	1	2	3	4	5	6	7	8	9	10
H(w)	15	13	12	10	9	7	6	5	3	1	0
H'(w)	0	-1	-5	-3	-3	-2	-1	0	-1	0	-2

In d.-f., give numerical answers.

d. [2 points] Find the average rate of change of H'(w) on the interval [3,7].

Answer:

e. [2 points] Use the table to estimate H''(1.5).

Answer:

f. [3 points] Find $\int_2^5 (3H'(w) - 2w) dw$.

Answer: