1. [13 points] Given below is a table of values for the **decreasing** function H(w) and its derivative, H'(w). Suppose the functions H(w), H'(w), and H''(w) are all defined and continuous on $(-\infty, \infty)$.

w	0	1	2	3	4	5	6	7	8	9	10
H(w)	15	13	12	10	9	7	6	5	3	1	0
H'(w)	0	-1	-5	-3	-3	-2	-1	0	-1	0	-2

a. [3 points] Use a right-hand Riemann sum with **five** equal subdivisions to estimate $\int_0^{10} H(w) dw$. Write out all the terms in your sum. You do not need to simplify, but your answer should not include the letter H.

Solution:

$$12 \times 2 + 9 \times 2 + 6 \times 2 + 3 \times 2 + 0 \times 2 = 2\left(12 + 9 + 6 + 3 + 0\right) = 60$$

b. [1 point] Does the answer to part **a.** overestimate, underestimate, or equal the value of $\int_0^{10} H(w) dw$? Circle your answer. If there is not enough information, circle NEI. You do not need to show any work for this part of the problem.

OVERESTIMATE	UNDERESTIMATE	EQUAL	NEI

c. [2 points] How many equal subdivisions of [0, 10] are needed so that the difference between the left and right Riemann sum approximations of $\int_0^{10} H(w) dw$ is exactly 1.5?

Solution:

$$\begin{pmatrix} H(10) - H(0) \end{pmatrix} \frac{(b-a)}{n} = R - L \\ \frac{(15-0)(10-0)}{n} = 1.5 \\ n = 100.$$

Answer: <u>100</u>

1. (continued) The information from the problem is repeated for convenience.

Given below is a table of values for the **decreasing** function H(w) and its derivative, H'(w). Suppose the functions H(w), H'(w), and H''(w) are all defined and continuous on $(-\infty, \infty)$.

w	0	1	2	3	4	5	6	7	8	9	10
H(w)	15	13	12	10	9	7	6	5	3	1	0
H'(w)	0	-1	-5	-3	-3	-2	-1	0	-1	0	-2

In **d.**–**f.**, give numerical answers.

d. [2 points] Find the average rate of change of H'(w) on the interval [3,7].

Solution:

$$\frac{H'(7) - H'(3)}{7 - 3} = \frac{0 - (-3)}{7 - 3} = \frac{3}{4}$$

Answer: <u>3/4</u>

e. [2 points] Use the table to estimate H''(1.5).

Solution:

$$\frac{H'(2) - H'(1)}{2 - 1} = \frac{-5 - (-1)}{2 - 1} = -4$$

Answer: <u>-4</u>

f. [3 points] Find
$$\int_2^5 (3H'(w) - 2w) dw$$
.

Solution:

$$\int_{2}^{5} (3H'(w) - 2w) dw = 3 \int_{2}^{5} H'(w) dw - 2 \int_{2}^{5} w dw$$
$$= 3(H(5) - H(2)) - w^{2} \Big|_{2}^{5}$$
$$= 3(7 - 12) - (5^{2} - 2^{2}) = -36$$

Answer: _______