6. [10 points] Let g(x) be the function defined by

$$g(x) = x\sin(\pi x) + \frac{1}{\pi}\cos(\pi x).$$

The derivative of g(x) is

$$g'(x) = \pi x \cos(\pi x).$$

As a reminder, $1 = \cos(0) = \sin(\frac{\pi}{2})$, and $-1 = \sin(-\frac{\pi}{2}) = \cos(\pi) = \cos(-\pi)$.

a. [3 points] Find all critical points of the function g(x) that are in the interval $\left[-\frac{1}{2},1\right]$.

Solution: We need to find points in
$$[-\frac{1}{2}, 1]$$
 such that
 $g'(x) = \pi x \cos(\pi x) = 0.$
We get $x = 0$ or $\cos(\pi x) = 0.$
Next, $\cos^2(\pi x) = 1 - \sin^2(\pi x) = 0$, so $\sin(\pi x) = \pm 1$. Now, from $\sin(-\frac{\pi}{2}) = -1$ and $\sin(\frac{\pi}{2}) = 1$
it follows that $x = \pm 1/2$.
Answer: $x = \underline{-1/2, 0, 1/2}$

b. [5 points] Find all x-values where the global extrema of g(x) occur on the interval $\left[-\frac{1}{2}, 1\right]$. Be sure to show your work and justify your answers.

Solution: Let us compute the values of g at the critical points and end points:

$$g(-1/2) = -\frac{1}{2}\sin(-\pi/2) + \frac{1}{\pi}\cos(-\pi/2) = 1/2,$$

$$g(0) = \frac{1}{\pi}\cos(0) = 1/\pi,$$

$$g(1/2) = \frac{1}{2}\sin(\pi/2) + \frac{1}{\pi}\cos(\pi/2) = 1/2,$$

$$g(1) = \sin(\pi) + \frac{1}{\pi}\cos(\pi) = -1/\pi.$$

We note that $\pi > 2$, so $1/\pi < 1/2$.

Answer: The maximum occurs at $x = -\frac{1}{2}, \frac{1}{2}$

Answer: The minimum occurs at x =_____1

c. [2 points] Find a formula for the linear approximation L(x) of the function g(x) at the point $\left(-2, \frac{1}{\pi}\right)$.

Solution:

$$L(x) = g(-2) + g'(-2) \cdot (x+2) = \frac{1}{\pi} - 2\pi \cos(-2\pi) \cdot (x+2) = \frac{1}{\pi} - 2\pi (x+2)$$

Answer:
$$L(x) = -\frac{1/\pi - 2\pi(x+2)}{1/\pi - 2\pi(x+2)}$$