

1. [12 points] You are moving straight upward in a hot air balloon.

- Your altitude $a = h(t)$, in miles, is a function of your time t , in hours, since takeoff.
- The air temperature $T = m(a)$ outside your balloon, in degrees Fahrenheit ($^{\circ}\text{F}$), is a function of your altitude a , in miles.

Both h and m are differentiable and invertible. The following values are known.

• $h(0.5) = 0.33$	• $h'(0.5) = 2$	• $m(0.33) = 55$	• $m'(0.33) = -16$
• $h(1) = 0.5$	• $h'(1) = 0.33$	• $m(0.5) = 52.8$	• $m'(0.5) = -15$

a. [5 points] For each of the following two equations: fill in the missing value, then use a complete sentence to interpret the equation practically.

$$m(h(0.5)) = \underline{\hspace{2cm}}$$

Interpretation:

$$\int_{0.5}^1 h'(t) \, dt = \underline{\hspace{2cm}}$$

Interpretation:

b. [3 points] Recall that $m(0.33) = 55$ and $m'(0.33) = -16$. Use these two values to estimate the temperature at an altitude of 0.43 miles. Include units and show your work.

Answer (include units): $\approx \underline{\hspace{2cm}}$

c. [4 points] How fast is the air temperature outside your balloon decreasing 30 minutes after takeoff? That is, at what rate is the air temperature decreasing as a function of **time** at this instant? Include units, and show your work to justify your answer.

Answer (include units): $\underline{\hspace{2cm}}$