

1. [12 points] You are moving straight upward in a hot air balloon.

- Your altitude $a = h(t)$, in miles, is a function of your time t , in hours, since takeoff.
- The air temperature $T = m(a)$ outside your balloon, in degrees Fahrenheit ($^{\circ}\text{F}$), is a function of your altitude a , in miles.

Both h and m are differentiable and invertible. The following values are known.

• $h(0.5) = 0.33$	• $h'(0.5) = 2$	• $m(0.33) = 55$	• $m'(0.33) = -16$
• $h(1) = 0.5$	• $h'(1) = 0.33$	• $m(0.5) = 52.8$	• $m'(0.5) = -15$

a. [5 points] For each of the following two equations: fill in the missing value, then use a complete sentence to interpret the equation practically.

$$m(h(0.5)) = \underline{\hspace{2cm} 55 \hspace{2cm}}$$

Interpretation:

Solution: Half an hour after takeoff, the air temperature outside your balloon is 55°F .

$$\int_{0.5}^1 h'(t) \, dt = \underline{\hspace{2cm} 0.17 \hspace{2cm}}$$

Interpretation:

Solution: In the second half hour of your flight, you ascend an additional 0.17 miles.

b. [3 points] Recall that $m(0.33) = 55$ and $m'(0.33) = -16$. Use these two values to estimate the temperature at an altitude of 0.43 miles. Include units and show your work.

Solution: $m'(0.33) = -16$ tells us that the temperature at an altitude of 0.43 miles is about 1.6°F lower than the temperature at an altitude of 0.33 miles. Then, since we were told that $m(0.33) = 55$, we know that $m(0.43)$ should be about $55 - 1.6 \approx 53.6^{\circ}\text{F}$. Note that one can also set up and use a formal linear approximation here.

Answer (include units): $\approx \underline{\hspace{2cm} 53.6^{\circ}\text{F} \hspace{2cm}}$

c. [4 points] How fast is the air temperature outside your balloon decreasing 30 minutes after takeoff? That is, at what rate is the air temperature decreasing as a function of **time** at this instant? Include units, and show your work to justify your answer.

Answer (include units): $\underline{\hspace{2cm} 32^{\circ}\text{F per hour} \hspace{2cm}}$

Solution: We are looking for the derivative of $m(h(0.5))$, which, by the chain rule, is $m'(h(0.5)) * h'(0.5) = m'(0.33) * 2 = -32$. So the temperature is decreasing at 32°F per hour. Note that the first given value tells us that, half an hour after takeoff, your altitude is 0.33 of a mile, so this computation is equivalent to multiplying the rate at which the temperature is changing with altitude, $m'(0.33) = -16^{\circ}\text{F}$ per mile, by the rate at which altitude is changing with time, $h'(0.5) = 2$ miles per hour.