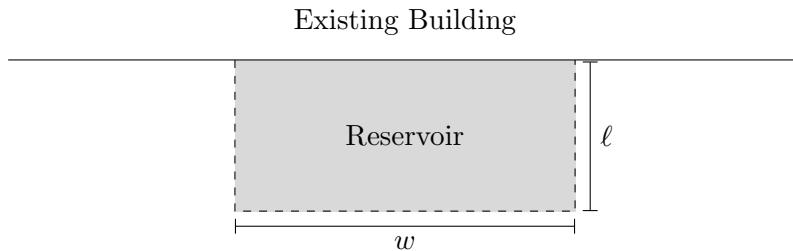


4. [14 points]

A city is building a new water treatment facility. A water reservoir will be built next to an existing building as shown here (viewed from above):



Three walls of the reservoir (dashed) and the floor of the reservoir (shaded) will be made of concrete. The cost for the concrete on the three walls is \$500 per meter of perimeter and the cost for the concrete for the floor is \$1000 per square meter.

a. [3 points] Find a formula for the cost C for the concrete to build the reservoir if it has dimensions ℓ and w (both in meters) as shown above.

Answer: $C = \underline{500(2\ell + w) + 1000\ell w}$

b. [2 points] If the budget for the total cost of the concrete is \$5,000,000, write a formula for the length ℓ of the reservoir in terms of its width w . This relationship can be used to find the largest reservoir possible, given the concrete budget, but you do not need to find this.

Solution: Using our formula from part (a) we get the following relationship between ℓ and w :

$$5,000,000 = 500(2\ell + w) + 1000\ell w.$$

Solving for ℓ we get:

$$10,000 = 2\ell + w + 2\ell w$$

$$10,000 = 2\ell(w + 1) + w$$

$$\ell = \frac{10,000 - w}{2(w + 1)}$$

Answer: $\ell = \underline{\frac{10,000 - w}{2(w + 1)}}$

4. (continued) The city is also looking for the most cost-effective way to build a large tank in the shape of a cylinder for the water treatment facility. The cost, in dollars, of a tank with radius r and height h (both given in meters) is given by

$$50\pi r^2 + 80\pi r h.$$

c. [2 points] The tank must have volume 10,000 cubic meters, so that $\pi r^2 h = 10,000$. Given this constraint, find a formula for the cost $T(r)$ of the tank, in dollars, that is a function of the variable r only. *Your answer should not include the height h of the tank.*

Answer: $T(r) = \frac{50\pi r^2 + \frac{80 \cdot 10,000}{r}}{r}$

d. [2 points] Note that, in context, $T(r)$ has a domain of $(0, \infty)$. Determine $\lim_{r \rightarrow 0^+} T(r)$ and $\lim_{r \rightarrow \infty} T(r)$. Each answer should either be a number, or ∞ or $-\infty$.

$$\lim_{r \rightarrow 0^+} T(r) = \underline{\hspace{2cm} \infty \hspace{2cm}}$$

$$\lim_{r \rightarrow \infty} T(r) = \underline{\hspace{2cm} \infty \hspace{2cm}}$$

e. [5 points] Find the radius that will minimize the cost of the tank. Use calculus, and show your work, but you need not simplify your numerical answers. *Make sure to justify why your answer is the global minimum; you may use work from previous parts of this problem.*

Solution: Setting $T'(r) = 100\pi r - \frac{80 \cdot 10,000}{r^2} = 0$, we find one positive critical point of $(8000/\pi)^{1/3}$. This critical point is a local minimum by the 2nd derivative test since $T''(r) = 100\pi + \frac{160 \cdot 10,000}{r^3}$ is always positive. Since this is the only critical point, and since by part b the cost grows infinitely large at both ends of the domain, it must be the global minimum.

Answer: Cost is minimized when $r = \underline{\hspace{2cm} 20/\sqrt[3]{\pi} \hspace{2cm}}$