
(Problem 10 continued)

- (d) (6 pts)
 - (i) If the average cost, a(q), is given by $a(q) = \frac{C(q)}{q}$, approximate q_0 so that $a(q_0)$ is the minimal average cost.
 - (ii) Show *analytically* that average cost will be minimized when C'(q) = a(q).

(iii) Demonstrate on the graph below how this result can be shown graphically.

(11.) And, for good measure, one last derivative.... No need to simplify, but **show all your work.**(3 pts) Find the derivative of $k(t) = \frac{(3t-4)}{\cos(2t)}$.