(1.) (1 pt each) True / False--Circle your choice. Circle T only if the statement is always true. [No explanation necessary.]

(a) If \(f'(x) = g'(x) \) for all \(x \), then \(f(x) = g(x) \) for all \(x \). \[T \quad F \]

(b) If \(f''(a) = 0 \), then \(f \) has an inflection point at \(x = a \). \[T \quad F \]

(c) If \(x = p \) is not a critical point of \(f \), then \(x = p \) is not a local maximum of \(f \). \[T \quad F \]

(d) If \(\int_{0}^{2} f(x)dx = 6 \) then \(\int_{0}^{4} f(x)dx = 12 \). \[T \quad F \]

(e) If \(\int_{0}^{4} f(x)dx = 6 \) and \(h(x) = 5f(x) \) then \(\int_{0}^{4} h(t)dt = 30 \). \[T \quad F \]

(2.) (4 pts.) Is the function \(g(x) = x^3 - \frac{x}{16} \) invertible? ______________

Below, give a clear justification for your answer.

(3.) (3 pts.) [No need to simplify, but show all of your work. Circle your answer.]

Find the derivative of \(s(x) = \sin^5 (3x^2 - 2) \).