(1.) (1 pt each) True / False--Circle your choice. Circle T only if the statement is always true. [No explanation necessary.]
(a) If $f^{\prime}(x)=g^{\prime}(x)$ for all x, then $f(x)=g(x)$ for all $x . \quad$ T \quad F
(b) If $f^{\prime \prime}(a)=0$, then f has an inflection point at $x=a$.

T $\quad \mathbf{F}$
(c) If $x=p$ is not a critical point of f, then $x=p$ is not a local maximum of f.

T $\quad \mathbf{F}$
(d) If $\int_{0}^{2} f(x) d x=6$ then $\int_{0}^{4} f(x) d x=12$.

T $\quad \mathbf{F}$
(e) If $\int_{0}^{2} f(x) d x=6$ and $h(x)=5 f(x)$ then $\int_{0}^{2} h(t) d t=30 . \quad$ T \quad F
(2.) (4 pts.) Is the function $g(x)=x^{3}-\frac{x}{16}$ invertible?

Below, give a clear justification for your answer.
(3.) (3 pts.) [No need to simplify, but show all of your work. Circle your answer.] Find the derivative of $s(x)=\sin ^{5}\left(3 x^{2}-2\right)$.

