(8.) The graph in the figure below is the graph of $\frac{d h}{d t}$, where h is the altitude in thousands of feet above sea level and t is in hours, for Professor Bob's recent climb to the top of Bear Peak in Colorado. Use the graph to answer the following questions.

(a) ($\mathbf{3} \mathbf{~ p t s})$ How long did it take Bob to reach the peak of the mountain?
(b) ($\mathbf{5} \mathbf{~ p t s)}$ What was the total change in altitude between $t=0$ and $t=4$?
(c) (4 pts) If Bob began his climb at 6000 feet above sea level, how high is the peak above sea level?
(d) (4pts) After 6 hours, Bob stopped at a lookout point to have a snack. What was the altitude of the lookout point?
(9.) ($\mathbf{3} \mathbf{~ p t s)}$ Use the Fundamental Theorem of Calculus to evaluate the function below. To get credit, you must show all of your work. Please circle your answer.
[Note: This is a different problem from above.] $\int_{2}^{5}\left(3 x^{2}-4 x+1\right) d x$

