2. (5 points) The temperature, \(A \), measured in degrees Fahrenheit, of the water near the surface of a small lake \(t \) days after the beginning of fall is described by \(A = f(t) \).
 Explain the meaning of the statement “\(f'(30) = -2 \)”.

3. (6 points) A continuous, differentiable function \(f \) is defined for \(x \geq 0 \), and satisfies
 - \(f \) has exactly one critical point,
 - \(f(0) = 0 \) and \(f(3) = 2 \),
 - \(f'(1) = 0 \), and
 - \(\lim_{x \to \infty} f(x) = 0 \).

 Circle each of the following conditions that are possible.

 - \(f \) has a local maximum at \(x = 1 \).

 - \(f \) has a local minimum at \(x = 1 \).

 - \(f \) has neither a local maximum nor a local minimum at \(x = 1 \).

 - \(f \) has a global maximum at \(x = 1 \).

 - \(f \) has a global minimum at \(x = 1 \).