10. (9 points) A piece of wire of length 40 cm is cut into two pieces. One piece is made into a circle; the rest is made into a square.

Find the lengths of each piece of wire so that the sum of the areas of the circle and square is a minimum. [Be sure to show all of your work and clearly identify your answers.]

Solution: Let x denote the length of wire that is made into the circle, so that $40-x$ is the length of the piece of wire to be shaped into a square. The circumference of the circle is then equal to x so it must have radius $r=x / 2 \pi$. The square, made from the remaining piece of wire that has length $40-x$, then has side length $(40-x) / 4$ so the area of the circle plus the area of the square is equal to

$$
A(x)=\pi\left(\frac{x}{2 \pi}\right)^{2}+\left(\frac{40-x}{16}\right)^{2}=\frac{x^{2}}{4 \pi}+\frac{(40-x)^{2}}{16}
$$

We see that the function $A(x)$ is a quadratic polynomial in x and the coefficient of x^{2} is $(1 / 4 \pi-$ $1 / 16)$ which is positive. Therefore, the graph of $A(x)$ is a parabola opening upward so it can have at most one critical point which will be a global minimum. The graph of $A(x)$ is shown in the figure below.

To find the critical point of A, we could either complete the square to write the quadratic function $A(x)$ in the form $a(x-b)^{2}+c$, or else find the zero of the derivative $A^{\prime}(x)$. Here we will use the latter method and compute the solution of the linear equation $A^{\prime}(x)=0$. That is,

$$
0=A^{\prime}(x)=\frac{x}{2 \pi}-\frac{40-x}{8}=x\left(\frac{1}{2 \pi}+\frac{1}{8}\right)-5=x\left(\frac{8+2 \pi}{16 \pi}\right)-5
$$

or $x=40 \pi /(4+\pi) \simeq 17.59603386 \mathrm{~cm}$. This value of x is in the interval $0<x<40$ so it is the value which gives minimum area. The length of the other piece of wire is $40-x=160 /(4+\pi) \simeq 22.40396614$. The minimum value of the sum of the areas turns out to be approximately $56.00991535 \mathrm{~cm}^{2}$

