11. (9 points) Let $s(t)$ give the position of an object along a straight line at time t and let $v(t)$ denote its instantaneous velocity at time t.
(a) Give the definition of the average velocity of the object over the time interval from $t=a$ to $t=b$.

Solution: The average velocity is

$$
\frac{s(b)-s(a)}{b-a}
$$

(b) Give the definition of the average of the velocity function over the interval from $t=a$ to $t=b$.

Solution: The definition of the average of the velocity function is:

$$
\frac{1}{b-a} \int_{a}^{b} v(t) d t
$$

(c) Is the average velocity of the object over the time interval from $t=a$ to $t=b$ equal to the average of the velocity function over this time interval? If so, explain why. If not, explain why not.

Solution: The two quantities are equal because of the fundamental theorem of calculus. That is, from part (b), the average of the velocity function is equal to

$$
\frac{1}{b-a} \int_{a}^{b} v(t) d t=\frac{1}{b-a} \int_{a}^{b} \frac{d s(t)}{d t} d t
$$

By the fundamental theorem of calculus, the last expression is equal to

$$
\frac{1}{b-a}(s(b)-s(a))
$$

which, by part \mathbf{a}, is the average velocity.

Please rewrite your name and section number.
NAME:
\qquad

