6. (8 points) Use the figure below to calculate the numerical values of the definite integrals in parts (a) through (d). You need not show your reasoning.

(a) $\int_{a}^{b} f(x) d x=$ \qquad
(b) $\int_{b}^{c} f(x) d x=$ \qquad
(c) $\int_{a}^{c} f(x) d x=$ \qquad
(d) $\int_{b}^{a} f(x) d x=$ \qquad
7. (8 points) An isosceles triangle has a base of length 8 meters. If θ denotes the angle opposite one of the two equal sides, and if θ is increasing at a constant rate of of 0.1 radians per second, how fast is the area of the triangle increasing when $\theta=\pi / 6$?

Solution: If $A(\theta)$ is the area of the triangle with angle θ, then we are asked to find the rate of change of A with respect to time when $\theta=\pi / 6$. We are given that $d \theta / d t=.1$ radians per second.

Let h denote the height of the triangle. Since the triangle is isosceles, the perpendicular bisector of the base passes through the top vertex so $\tan \theta=h /($ half of base $)=h / 4$ or $h=4 \tan \theta$. Thus, the area A of the triangle is

$$
A=\frac{1}{2} \text { base } \cdot \text { height }=\frac{1}{2}(8) \cdot(4 \tan \theta)=16 \tan \theta \text { square meters. }
$$

From the chain rule and the formula for the derivative of the tangent function, we find $d A / d t=$ $\left(16 / \cos ^{2} \theta\right) d \theta / d t$. When $\theta=\pi / 6, \cos \theta=\sqrt{3} / 2$ so at this time,

$$
\frac{d A}{d t}=\frac{16}{(\sqrt{3} / 2)^{2}} \frac{d \theta}{d t}=\frac{64}{3}(.1)=\frac{6.4}{3} \simeq 2.1333 \text { square meters per second. }
$$

