1. (2 points each) Circle "True" or "False" for each of the following problems. Circle "True" only is the statement is always true. No explanation is necessary.
(a) Suppose f is a continuous function such that $f(1)=5$ and $f^{\prime}(x)<0$ for $x \geq 5$. Then there is an $x>5$ so that $f(x)=0$.

True False
(b) $\int_{0}^{10} f(x) d x$ is a function of x.

True False
(c) Let

$$
f(x)= \begin{cases}5 & 0 \leq x<2 \\ 0 & 2 \leq x<8 \\ 10 & 8 \leq x \leq 10 .\end{cases}
$$

Then the average value of $f(x)$ on $[0,10]$ is 3 .

$$
\text { True } \quad \text { False }
$$

(d) If f^{\prime} is continuous and has a local maximum at a, then f has an inflection point at a.

$$
\text { True } \quad \text { False }
$$

(e) $\int x \ln (x) d x=\frac{x^{2}}{2} \ln (x)-\frac{x^{2}}{4}+C$

True
False
(f) A function can have more than one antiderivative.

True False
(g) For a continuous function f, either the left-hand sum or the right-hand sum is an overestimate of the definite integral of f on an interval $[a, b]$.

True
False

