10. (11 points) Hiking through the forest you come upon a cave. As you stand outside the cave and peer in, a bat flies out towards you before veering off into the forest. The bat's path is given in the figure below where the origin represents where you are standing. The distance l represents the distance between you and the bat. Everything is measured in feet.

(a) Find a formula for l^{2} in terms of x and $f(x)$.

Using the Pythagorean Theorem one gets

$$
l^{2}=x^{2}+f(x)^{2}
$$

(b) Let $D=l^{2}$ and find $\frac{d D}{d x}$.

$$
\frac{d D}{d x}=2 x+2 f(x) f^{\prime}(x)
$$

(c) The minimum distance between you and the bat occurs when D is minimized. Find the value of x at this point in terms of $f(x)$ and $f^{\prime}(x)$.

Setting our answer in part (b) equal to 0, we get that

$$
x=-f(x) f^{\prime}(x)
$$

is a critical point. To show this is a minimum, we take the second derivative

$$
\frac{d^{2} D}{d x^{2}}=2+2\left[f^{\prime}(x)\right]^{2}+2 f(x) f^{\prime \prime}(x)
$$

We see from the graph that everything here is positive, so the second derivative of $D(x)$ is positive, so we have indeed found a minimum.
(d) Suppose $f(x)=e^{x+3}$. If a bat comes with 5 feet of you, a panic attack will occur. (Remember that the distance between you and the bat is l, not $D!$) Did the bat induce a panic attack? [Hint: You are encouraged to use your calculator here!]

Using what we found in part (c) we have

$$
\begin{aligned}
x & =-e^{x+3} e^{x+3} \\
& =-e^{2 x+6} .
\end{aligned}
$$

So we need to solve the equation $x+e^{2 x+6}=0$ for x. We use the calculator to do this, getting the answer $x \approx-2.53$. So then $f(-2.53)=e^{-2.53+3} \approx 1.60$. Looking back at our equation for l^{2}, we have $l^{2} \approx 8.96$, so $l \approx 3 \mathrm{ft}$. Therefore a panic attack does incur!

