6. $(4+4+4$ points $)$ Harry Potter, Ron, and Hermione decide to attend the Wizard Fair. The newest ride at the fair, called The Coil of Doom ${ }^{\text {TM }}$, is a spin-off on bungee jumping. Riders are attached to a special bungee cord which oscillates up and down. The riders' position above the ground, in feet, is given as a function of time, t, in seconds, by $y=y_{0} \cos (\omega t)+C$, with y_{0}, ω, and C constants.
(a) The riders board from a platform 15 feet above the ground, are pulled upward until, 6 seconds later, they reach a maximum height of 165 feet. In another 6 seconds, riders are back at the initial position. The cycle repeats for one minute, at which point the ride ends. Using this information, determine an explicit formula for y. [Show all constants in exact form.]

The riders start from a platform 15 feet above the ground and reach a maximum height of 165 ft . The midline is $C=90$ and the amplitude must be $\frac{165-15}{2}=75$ feet. Since the ride starts at the bottom, , $y_{0}=-75$ The period is the time it takes the riders to return to their original position. So, the period equals 12 seconds. Since $\omega=\frac{2 \pi}{\text { period }}, \omega=\frac{\pi}{6}$. This means that $y=-75 \cos \left(\frac{\pi}{6} t\right)+90$.
(b) Find formulas for the velocity and acceleration of the riders as a function of t.
$v(t)=y^{\prime}=75\left(\frac{\pi}{6}\right) \sin \left(\frac{\pi}{6} t\right)$
$a(t)=y^{\prime \prime}=75\left(\frac{\pi}{6}\right)^{2} \cos \left(\frac{\pi}{6} t\right)$
(c) Show that the function y satisfies the equation $\frac{d^{2} y}{d t^{2}}+\omega^{2} y=K$, where K is a constant. What is the value of K ?

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}}+\omega^{2} y & =a(t)+\omega^{2} y \text { and from part (a) we know } \omega=\frac{\pi}{6} \\
& =75\left(\frac{\pi}{6}\right)^{2} \cos \left(\frac{\pi}{6} t\right)-\left(\frac{\pi}{6}\right)^{2}\left((75) \cos \left(\frac{\pi}{6}\right)+90\right) \\
& =75\left(\frac{\pi}{6}\right)^{2} \cos \left(\frac{\pi}{6} t\right)-\left(\frac{\pi}{6}\right)^{2}(75) \cos \left(\frac{\pi}{6}\right)+90\left(\frac{\pi}{6}\right)^{2} \\
& =\frac{90 \pi^{2}}{36}=\frac{5 \pi^{2}}{2}
\end{aligned}
$$

So $K=\frac{5 \pi^{2}}{2}$.

