1. (14 points) Problems (a), (b) and (c) below are independent of each other.
(a) (5 pts.) Compute the linear approximation to $g(x)=3 \ln \left(x^{2}\right)$ near $x=1$.

- $g^{\prime}(x)=3 \frac{1}{x^{2}}(2 x)=\frac{6}{x} ;$
- $g^{\prime}(1)=6 ;$
- $g(1)=3 \ln (1)=0$.

So, $g(x) \simeq 6(x-1)$ near $x=1$.
(b) (3 pts.) Write the limit definition of the derivative of the function $f(x)=e^{x}-e^{-x}$ at the point $x=a$. You do not need to simplify or attempt to compute the limit.

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{e^{a+h}-e^{-(a+h)}-e^{a}+e^{-a}}{h}
$$

(c) (6 pts.) Assuming the following table accurately represents the behavior of the continuous function $s(x)$ over the interval $[0,12]$, approximate the following:
[NOTE: the values in the table are for $s^{\prime}(x)$, not $\left.s(x)\right]$.

$$
\begin{array}{l||ccccc}
x & 0 & 3 & 6 & 10 & 12 \\
\hline s^{\prime}(x) & -6 & -3 & 0 & 1.2 & 17
\end{array}
$$

(i) $s^{\prime \prime}(3) \simeq \frac{1}{2}\left(\frac{0+3}{3}+\frac{-3+6}{3}\right)=(1+1) / 2=1$
(ii) All intervals in $[0,12]$ (if any) over which s is decreasing.

If s is decreasing, then $s^{\prime}<0$. So, s is decreasing over $(0,6)$.
(iii) All intervals in $[0,12]$ (if any) over which s is concave down.

If s is concave down, then s^{\prime} is decreasing. Since s^{\prime} is increasing over all of $[0,12]$, there are $N O$ intervals over which s is concave down.

