2. (12 points) Problems (a) and (b) below are independent of each other.
(a) (7 pts.) In each case, calculate the value of the given integral expression. Where appropriate, you may assume that f is a differentiable function. Your final answer should not contain any integral symbols and should be simplified as much as possible. You may assume the symbols a, b and c represent constants. Show your work!
(i) $\int_{a}^{b} c f^{\prime}(t) d t=c \int_{a}^{b} f^{\prime}(t) d t=c(f(b)-f(a))$.
(ii) $\frac{d}{d t}\left(\int_{1}^{2} f(t) d t\right)=\frac{d}{d t}($ Constant $)=0$.
(iii) $\int_{1}^{3}\left(c+\frac{t^{3}}{4}\right) d t=\left.\left(c t+\frac{t^{4}}{16}\right)\right|_{1} ^{3}=\left(3 c+\frac{81}{16}\right)-\left(c+\frac{1}{16}\right)=2 c+5$.
(b) (5 pts.) Assume now that f is a differentiable function of w, and that $w=w(x)$ is a differentiable function of x. Calculate the derivative indicated below. You may assume the symbol a stands for a constant. Show your work.

$$
\frac{d}{d x}\left(a f(w)+x w^{2}\right)=a \frac{d f}{d w} \frac{d w}{d x}+\left(w^{2}+2 x w \frac{d w}{d x}\right)=w^{2}+\frac{d w}{d x}\left(a \frac{d f}{d w}+2 x w\right) .
$$

