4. (12 points) Problems (a) and (b) below are independent of each other.
(a) (6 pts .) Suppose the function r gives the number of customers per day going to a new ice-cream store that just opened near campus. (Assume t is measured in days since the opening and that we are modeling the situation by a continuous function, r.) IMPORTANT: The answers to (i) and (ii) should include clear units, and should be given using words understandable to someone who has never taken calculus.
(i) What does $\int_{0}^{20} r(t) d t$ represent?

This definite integral represents the total number of customers in the ice-cream store during the first 20 days following its opening.
(ii) If each customer spends on average of $\$ 3.50$ in the store, what does the following expression represent?

$$
\frac{3.5}{20} \int_{0}^{20} r(t) d t
$$

This definite integral represents the average daily revenue (in dollars) of the ice-cream store (from sales to customers) during the first 20 days following its opening.
(b) (6 points) If the average value of the function $d(x)=7 / x^{2}$ on the interval $[1, c]$ is equal to 1 , what is the value of c ?

Using the definition of average value we see that:

$$
\begin{aligned}
& 1=\frac{1}{c-1} \int_{1}^{c} \frac{7}{x^{2}} d x, \quad \text { which means that } \\
& 1=\left.\frac{7}{c-1}\left(\frac{-1}{x}\right)\right|_{1} ^{c} .
\end{aligned}
$$

Now, the previous equation amounts to:

$$
\begin{aligned}
\frac{c-1}{7} & =\frac{(1-c)}{c}, \quad \text { or } \\
c^{2}-c & =7+7 c, \\
0 & =c^{2}-8 c+7, \\
0 & =(c-1)(c-7) .
\end{aligned}
$$

Thus, either $c=1$ or $c=7$. Note that $\int_{1}^{1} f(x) d(x)=0$ for any function, so $c=7$.

