8. (17 points) Consider the graph of the function $f$ given below. Your answers in parts (i) through (iv) may contain some of the constants $a, x_{1}, x_{2}, b, x_{3}, x_{4}$, or $c$.

(i) (2 pts.) Consider just the interval ( $b, c$ ). Find all the $x$-values which are critical points of $f$ on this interval (if any).

Critical points: $\qquad$ $x_{3}, x_{4}$
(ii) (6 pts.) Determine the following and briefly justify your answers.

- The value of $\int_{x_{2}}^{x_{1}} f(x) d x:-3\left(x_{2}-x_{1}\right)$.

Justification:
This definite integral is equal to $-\int_{x_{1}}^{x_{2}} f(x) d x$, and $\int_{x_{1}}^{x_{2}} f(x) d x$ is equal to the area of the rectangle of height 3 and base $\left(x_{2}-x_{1}\right)$ formed by the graph of $f$, the $x$-axis, and the lines $x=x_{1}$ and $x=x_{2}$.

- The $\operatorname{sign}$ of $\int_{b}^{c} f(x) d x$ : positive.


## Justification:

The area under the graph of $f$ and above the $x$-axis, between $x=x_{3}$ and $x=c$, is larger than the area under the $x$-axis and above the graph of $f$, between $x=b$ and $x=x_{3}$.
(iii) (5 pts.) If: $F^{\prime}(x)=f(x)$ and $F(0)=\pi$, estimate $F\left(x_{2}\right)$. Show step-by-step work.
$F\left(x_{2}\right)-F(0)=\int_{0}^{x_{2}} f(x) d x$, which means that $F\left(x_{2}\right)=3\left(x_{2}-x_{1}\right)+\pi$
(iv) (4 pts.) If $F$ (from part (iii)) is a continuous function, determine the $x$-values of all the critical points of $F$ on the interval $(0, c)$.

Critical points: $\quad a, b, x_{3}$

