5. (16 points) Use the information given in the table below to calculate the indicated values. If a value cannot be determined, state explicitly what is missing. Assume that f and f^{\prime} are continuous, and that the table is reflective of the behavior of f.

x	0	3	6	9	12
$f(x)$	30	20	13	8	5
$f^{\prime}(x)$	-4	-3	-2	-1.5	-.5

Determine the following and show your work (3 points each):
(a) an approximate value for $f(3.1)$ using a local linearization
(b) a left-hand sum with 4 subdivisions to approximate $\int_{0}^{12} f(x) d x$
(c) the least number of subdivisions necessary to assure that the left- and right-hand approximations of $\int_{0}^{12} f(x) d x$ agree to within 1 unit
(d) $\int_{3}^{12} f^{\prime}(x) d x$

Explain your answers to the following (2 points each):
(e) Do you expect your approximation for $f(3.1)$ from part (a) to be an overestimate or an underestimate?
(f) Do you expect your left-hand approximation from part (b) to be an overestimate or an underestimate?

