2. (12 points) Suppose that f and g are continuous functions and $\int_{0}^{2} f(x) d x=5$ and $\int_{0}^{2} g(x) d x=13$. Compute the following. If the computation cannot be made because something is missing, explain clearly what is missing.
(a) $\int_{4}^{6} f(x-4) d x=\int_{0}^{2} f(x) d x=5$
(b) $\int_{-2}^{0} 2 g(-t) d t=2 \int_{0}^{2} g(t) d t=2(13)=26$
(c) $\int_{2}^{0}(f(y)+2) d y=-\int_{0}^{2} f(y) d y-\int_{0}^{2} 2 d y=-(5)-4=-9$
(d) $\int_{2}^{2} g(x) d x=0$
(e) Suppose that f is an even function. Compute the average value of f from -2 to 2 .

$$
\frac{1}{2-(-2)} \int_{-2}^{2} f(x) d x=\frac{1}{4}\left(2 \int_{0}^{2} f(x) d x\right)=\frac{1}{2}(5)=\frac{5}{2}
$$

