4. (12 points) The zoo has decided to make the new octopus tank spectacular. It will be cylindrical with a round base and top. The sides will be made of Plexiglas which costs $\$ 65.00$ per square meter, and the materials for the top and bottom of the tank cost $\$ 50.00$ per square meter. If the tank must hold 45 cubic meters of water, what dimensions will minimize the cost, and what is the minimum cost?

Let V denote the volume of the tank. Then $V=\pi r^{2} h=45 \mathrm{~m}^{3}$.
Solving for h gives $h=\frac{45}{\pi r^{2}} \mathrm{~m}$.
The area of the "sides" of the tank is $2 \pi r h=\frac{90}{r} m^{2}$, and the area of the circles for the top and bottom of the tank is $2 \pi r^{2}$.

Thus, the cost of the tank as a function of r is

$$
C(r)=65\left(\frac{90}{r}\right)+50(2)\left(\pi r^{2}\right)=\frac{5850}{r}+100 \pi r^{2} .
$$

To minimize the cost, set $C^{\prime}(r)=-\frac{5850}{r^{2}}+200 \pi r$ equal to zero, since $C^{\prime}(r)$ is defined for all values of r in the domain $(r>0)$.

Solving for r, we get $r^{3}=\frac{5850}{200 \pi}$, so $r \approx 2.104$ meters.
Testing to see if this r value is in fact, the minimum, we use the second derivative test.
Since $C^{\prime \prime}(r)=200 \pi+2 \frac{5850}{r^{3}}>0$ for all values of r in the domain, we see that C is concave up for all values of r. Since $C(r) \rightarrow \infty$ as $r \rightarrow 0$ and as $r \rightarrow \infty, r=2.104$ is the global minimum of C.
\qquad
height $\quad \approx 3.237 \mathrm{~m}$
cost $\quad \approx \$ 4171$

