5. (16 points) Use the information given in the table below to calculate the indicated values. If a value cannot be determined, state explicitly what is missing. Assume that \(f \) and \(f' \) are continuous, and that the table is reflective of the behavior of \(f \).

\[
\begin{array}{c|ccccc}
 x & 0 & 3 & 6 & 9 & 12 \\
 \hline
 f(x) & 30 & 20 & 13 & 8 & 5 \\
 f'(x) & -4 & -3 & -2 & -1.5 & -.5 \\
\end{array}
\]

Determine the following and show your work (3 points each):

(a) an approximate value for \(f(3.1) \) using a local linearization

\[
f(3.1) \approx f(3) + f'(3)(3.1 - 3) \approx 20 + (-3)(0.1) = 19.7
\]

(b) a left-hand sum with 4 subdivisions to approximate \(\int_0^{12} f(x)dx \)

\[
\text{LHS}_4 = (f(0) + f(3) + f(6) + f(9))(3) = 213
\]

(c) the least number of subdivisions necessary to assure that the left- and right-hand approximations of \(\int_0^{12} f(x)dx \) agree to within 1 unit

If \(|\text{RHS} - \text{LHS}| \leq 1 \), then \(|f(12) - f(0)|\Delta x = 25\Delta x \leq 1 \). Thus, \(25 \left(\frac{12 - 0}{n} \right) \leq 1 \Rightarrow (25)(12) \leq n \). This implies we need at least 300 subdivisions.

(d) \(\int_3^{12} f'(x)dx \)

From the FTofC, we know \(\int_3^{12} f'(x)dx = f(12) - f(3) = 5 - 20 = -15 \)

Explain your answers to the following (2 points each):

(e) Do you expect your approximation for \(f(3.1) \) from part (a) to be an overestimate or an underestimate?

If the table is representative of the behavior of the function \(f \), then \(f''(3) > 0 \) which implies that \(f \) is concave up at 3. Thus we expect the approximation to be an underestimate.

(f) Do you expect your left-hand approximation from part (b) to be an overestimate or an underestimate?

If the table is representative of the behavior of \(f \), then \(f \) is decreasing, thus the left-hand sum is an overestimate.