5. (16 points) Use the information given in the table below to calculate the indicated values. If a value cannot be determined, state explicitly what is missing. Assume that f and f' are continuous, and that the table is reflective of the behavior of f.

x	0	3	6	9	12
f(x)	30	20	13	8	5
f'(x)	-4	-3	-2	-1.5	5

Determine the following and show your work (3 points each):

(a) an approximate value for f(3.1) using a local linearization

$$f(3.1) \approx f(3) + f'(3)(3.1 - 3) \approx 20 + (-3)(0.1) = 19.7$$

(b) a left-hand sum with 4 subdivisions to approximate $\int_0^{12} f(x)dx$

$$LHS_{(4)} = (f(0) + f(3) + f(6) + f(9))(3) = 213$$

(c) the least number of subdivisions necessary to assure that the left- and right-hand approximations of $\int_0^{12} f(x)dx$ agree to within 1 unit

If $|RHS - LHS| \le 1$, then $|f(12) - f(0)|\Delta x = 25\Delta x \le 1$. Thus, $25\left(\frac{12 - 0}{n}\right) \le 1 \Rightarrow (25)(12) \le n$. This implies we need at least 300 subdivisions.

(d)
$$\int_3^{12} f'(x)dx$$

From the FTofC, we know
$$\int_3^{12} f'(x)dx = f(12) - f(3) = 5 - 20 = -15$$

Explain your answers to the following (2 points each):

(e) Do you expect your approximation for f(3.1) from part (a) to be an overestimate or an underestimate?

If the table is representative of the behavior of the function f, then f''(3) > 0 which implies that f is concave up at 3. Thus we expect the approximation to be an underestimate.

(f) Do you expect your left-hand approximation from part (b) to be an overestimate or an underestimate?

If the table is representative of the behavior of f, then f is decreasing, thus the left-hand sum is an overestimate.