5. (16 points) Use the information given in the table below to calculate the indicated values. If a value cannot be determined, state explicitly what is missing. Assume that f and f^{\prime} are continuous, and that the table is reflective of the behavior of f.

x	0	3	6	9	12
$f(x)$	30	20	13	8	5
$f^{\prime}(x)$	-4	-3	-2	-1.5	-.5

Determine the following and show your work (3 points each):
(a) an approximate value for $f(3.1)$ using a local linearization

$$
f(3.1) \approx f(3)+f^{\prime}(3)(3.1-3) \approx 20+(-3)(0.1)=19.7
$$

(b) a left-hand sum with 4 subdivisions to approximate $\int_{0}^{12} f(x) d x$
$\operatorname{LHS}_{(4)}=(f(0)+f(3)+f(6)+f(9))(3)=213$
(c) the least number of subdivisions necessary to assure that the left- and right-hand approximations of $\int_{0}^{12} f(x) d x$ agree to within 1 unit

If $|R H S-L H S| \leq 1$, then $|f(12)-f(0)| \Delta x=25 \Delta x \leq 1$. Thus, $25\left(\frac{12-0}{n}\right) \leq 1 \Rightarrow$ $(25)(12) \leq n$. This implies we need at least 300 subdivisions.
(d) $\int_{3}^{12} f^{\prime}(x) d x$

From the FTofC, we know $\int_{3}^{12} f^{\prime}(x) d x=f(12)-f(3)=5-20=-15$

Explain your answers to the following (2 points each):
(e) Do you expect your approximation for $f(3.1)$ from part (a) to be an overestimate or an underestimate?

If the table is representative of the behavior of the function f, then $f^{\prime \prime}(3)>0$ which imples that f is concave up at 3 . Thus we expect the approximation to be an underestimate.
(f) Do you expect your left-hand approximation from part (b) to be an overestimate or an underestimate?

If the table is representative of the behavior of f, then f is decreasing, thus the left-hand sum is an overestimate.

