3. The figure below shows a differentiable function f and the line tangent to the graph at the point $(2,5)$: (picture not drawn to scale)

(a) (3 points) Approximate $f(2.01)$. Is your approximation an over or underestimate? Explain.
¿From the two points given, the slope of the tangent line is 2. Therefore $f^{\prime}(2)=2$ and

$$
f(2.01) \approx f(2)+0.01 \cdot f^{\prime}(2)=5.02
$$

Since f is concave down this must be an overestimate.
(b) (3 points) Evaluate $h^{\prime}(2)$ if $h(x)=(f(x))^{3}$.

By the chain rule,

$$
h^{\prime}(x)=3(f(x))^{2} f^{\prime}(x)
$$

whence

$$
h^{\prime}(2)=3(f(2))^{2} f^{\prime}(2)=150
$$

(c) (3 points) Evaluate $g^{\prime}(2)$ if $g(x)=e^{f(x)}$.

By the chain rule,

$$
g^{\prime}(x)=f^{\prime}(x) e^{f(x)}
$$

whence

$$
g^{\prime}(2)=f^{\prime}(2) e^{f(2)}=2 e^{5} \approx 296.826
$$

