5. (8 points) A potter has a fixed volume of clay in the form of a cylinder. As he rolls the clay, the length of the cylinder, L, of increases, while the radius, r, decreases. If the length of the cylinder is increasing at a constant rate of 0.2 cm per second, find the rate at which the radius is changing when the radius is 1.5 cm and the length is 4 cm .
[Recall that the volume of a cylinder of radius r and length L is $\pi r^{2} L$.]

Differentiating the formula for the volume, we find

$$
\frac{d V}{d t}=\pi 2 r \frac{d r}{d t} L+\pi r^{2} \frac{d L}{d t} .
$$

Although the shape of the clay is changing, the volume is not, so $\frac{d V}{d t}=0$. Combining these two statements,

$$
\pi 2 r \frac{d r}{d t} L+\pi r^{2} \frac{d L}{d t}=0
$$

whence

$$
\frac{d r}{d t}=-\frac{r \frac{d L}{d t}}{2 L}
$$

Plugging in the given values $L=4, r=1.5, \frac{d L}{d t}=0.2$ we deduce

$$
\frac{d r}{d t}=-0.0375 \mathrm{~cm} / \mathrm{s} .
$$

