- University of Michigan Department of Mathematics

7. (4 points each) Table 1 below displays some values of an invertible, twice-differentiable function f(x), while Figure 2 depicts the graph of the function g(x).

The region under *g* from 0 to 7 can be viewed as a 1×7 rectangle with

a triangle sitting on top of it with base 7 and height 2. Thus,

Table 1

x	1	2	3	4	5
f(x)	-5	-2	2	4	7
f'(x)	5	6	2	3	3
f''(x)	1	-1	-3	-2	0

(a) $\int_0^{\gamma} g(x) dx$

Figure 2: Graph of g(x)

Evaluate each of the following. Show your work.

 $\int_{0}^{7} g(x) \, dx = 7 + \left(\frac{1}{2}\right)(7)(2) = 14$ (b) $\int_{1}^{3} f'(x) \, dx$ By the fundamental theorem of calculus, $\int_{1}^{3} f'(x) \, dx = f(3) - f(1) = 7$ (c) $\int_{1}^{5} \left(3f''(x) + 4 \right) dx$ $\int_{1}^{5} \left(3f''(x) + 4 \right) dx = 3 \int_{1}^{5} f''(x) dx + \int_{1}^{5} 4 dx$ $= 3 \left(f'(5) - f'(1) \right) + 4(5 - 1)$ = 10(d) $\int_{1}^{4} \left(f'(x)g(x) + f(x)g'(x) \right) dx$ Recognizing f'(x)g(x) + f(x)g'(x) as the derivative of the f(x)g(x) (the product rule!), we apply the fundamental theorem of calculus to find $\int_{1}^{4} \left(f'(x)g(x) + f(x)g'(x) \right) dx = f(x)g(x) \Big|_{1}^{4} = (4)(2) - (-5)(3) = 23$