8. (10 points) A typical student spends the 24 hours leading up to this exam sleeping, studying, eating, and Facebook stalking. Suppose the total amount of time spent on eating and Facebook is 8 hours. The student's score on the exam, E (out a possible 100 points) depends on S, the number of hours of sleep the student enjoys during the 24 hours leading up to the exam. To be precise,

$$
E(S)=40 \sin \left(\frac{5 \pi}{51}(S-3.4)\right)+36
$$

How many hours should the student study in the day leading up to the exam to maximize his / her score?
[You must use calculus - not just your calculator - and show your work to receive full credit.]
We are looking for the global maximum of E. Thus start by identifying which values of S make $E^{\prime}(S)=0$:

$$
E^{\prime}(S)=(40)\left(\frac{5 \pi}{51}\right) \cos \left(\frac{5 \pi}{51}(S-3.4)\right)=0
$$

implies

$$
\frac{5 \pi}{51}(S-3.4)=\frac{\pi}{2}+k \pi
$$

for some integer k. It follows that any solution to this is of the form $S=8.5+\frac{51 k}{5}$ for k an integer. Since taking any negative value of k gives a negative value of S, and taking any positive value of k gives a value of S larger than 16 , the only solution to $E^{\prime}(S)=0$ is $S=8.5$ hours. Also, since $E^{\prime}(S)>0$ for S slightly below 8.5 and $E^{\prime}(S)<0$ for S slightly larger than $8.5, E$ must attain a maximum at $S=8.5$.

To check that this is the global maximum on the interval, it suffices to test the the endpoints. Plugging these in, we find $E(0) \approx 1.359$ and $E(16) \approx 9.052$, both of which are smaller than $E(8.5)=76$. So, the student's exam score is maximized when he / she sleeps 8.5 hours; this means the student must study $16-8.5=7.5$ hours to maximize his / her score.

