2. [12 points]

Use the graph of the function f^{\prime} and the table of values for the function g to answer the questions below. Each problem requires only a small amount of work, but you must show it.

x	-20	-10	0	10	20	30
$\mathrm{~g}(\mathrm{x})$	0	4	0	-18	-56	-120
$\mathrm{~g}^{\prime}(\mathrm{x})$	6	1	-10	-27	-50	-79

a. [3 points] Write a formula for the local linearization of g near $x=10$ and use it to approximate $g(10.1)$.

Solution:

$$
\begin{aligned}
g(x) & \approx g(10)+g^{\prime}(10)(x-10) \\
g(10.1) & \approx g(10)+g^{\prime}(10)(10.1-10) \\
& =-18+(-27)(0.1)=-20.7
\end{aligned}
$$

b. [3 points] Using the table, estimate $g^{\prime \prime}(-10)$.

Solution: Note that $g^{\prime \prime}(x) \approx \frac{\Delta g^{\prime}(x)}{\Delta x}$. We will use the two x-values closest to -10 : $x=-20$ and $x=0$.

$$
g^{\prime \prime}(10) \approx \frac{g^{\prime}(0)-g^{\prime}(-20)}{0-(-20)}=\frac{-10-6}{0-(-20)}=\frac{-16}{20}=\frac{-4}{5}=-0.8
$$

c. [3 points] If $f(3)=30$, find the exact value of $f(1)$.

Solution: By the Fundamental Theorem of Calculus,

$$
f(3)-f(1)=\int_{1}^{3} f^{\prime}(x) d x .
$$

This integral represents the area under $f^{\prime}(x)$ and above the x-axis between $x=1$ and $x=3$. Using basic geometry, this area is 40 . Thus, $f(3)-f(1)=40$, so $f(1)=$ $f(3)-40=30-40=-10$.
d. $[3$ points $]$ Given that $f(3)=30$, find the exact value of $\int_{1}^{3} g^{\prime}(f(z)) f^{\prime}(z) d z$.
(Hint: use part (c).)
Solution: We recognize $g^{\prime}(f(z)) f^{\prime}(z)$ as the derivative of $g(f(z))$, because of the chain rule. By the Fundamental Theorem, the integral above is equal to $g(f(3))-g(f(1))$, which is equal to $g(30)-g(-10)$, using part c. Filling in values of g from the table, this is $-120-4=-124$.

