Solution:

2. [12 points]

Use the graph of the function f' and the table of values for the function g to answer the questions below. Each problem requires only a small amount of work, but you must show it.

х	-20	-10	0	10	20	30
g(x)	0	4	0	-18	-56	-120
g'(x)	6	1	-10	-27	-50	-79

a. [3 points] Write a formula for the local linearization of g near x = 10 and use it to approximate g(10.1).

b. [3 points] Using the table, estimate g''(-10).

Solution: Note that $g''(x) \approx \frac{\Delta g'(x)}{\Delta x}$. We will use the two x-values closest to -10: x = -20 and x = 0. $g''(10) \approx \frac{g'(0) - g'(-20)}{0 - (-20)} = \frac{-10 - 6}{0 - (-20)} = \frac{-16}{20} = \frac{-4}{5} = -0.8$

c. [3 points] If f(3) = 30, find the exact value of f(1).

Solution: By the Fundamental Theorem of Calculus,

$$f(3) - f(1) = \int_{1}^{3} f'(x) dx.$$

This integral represents the area under f'(x) and above the x-axis between x = 1 and x = 3. Using basic geometry, this area is 40. Thus, f(3) - f(1) = 40, so f(1) = f(3) - 40 = 30 - 40 = -10.

d. [3 points] Given that f(3) = 30, find the exact value of $\int_{1}^{3} g'(f(z))f'(z)dz$. (Hint: use part (c).)

Solution: We recognize g'(f(z))f'(z) as the derivative of g(f(z)), because of the chain rule. By the Fundamental Theorem, the integral above is equal to g(f(3)) - g(f(1)), which is equal to g(30) - g(-10), using part c. Filling in values of g from the table, this is -120 - 4 = -124.