4. [12 points]
a. [6 points] Using 4 equal subdivisions, find a Riemann sum which is an underestimate for

$$
\int_{2}^{4} \ln (x) d x
$$

Sketch a graphical representation of your Riemann sum on the axes below, and write "LHS" or "RHS" next to your figure to indicate whether you are using a left-hand sum or a right-hand sum. Write out the terms of the Riemann sum using exact values (no calculator approximations). There is no need to simplify the sum.

$\int_{2}^{4} \ln (x) d x \approx \underline{0.5 \ln 2+0.5 \ln 2.5+0.5 \ln 3+0.5 \ln 3.5}$
b. [3 points]

Show that $\int \ln (x) d x=x \ln (x)-x+C$, where C is a constant.
Solution: We need to check that $\frac{d}{d x}(x \ln (x)-x+C)=\ln (x)$. Using the product rule, we have

$$
\frac{d}{d x}(x \ln (x)-x+C)=\left(x \cdot \frac{1}{x}+1 \cdot \ln x\right)-1+0=1+\ln (x)-1=\ln (x) .
$$

c. [3 points]

Using part (b), find the exact value of the integral $\int_{2}^{4} \ln (x) d x$.
Solution: By the Fundamental Theorem and part (b),

$$
\begin{aligned}
\int_{2}^{4} \ln (x) d x & =[4 \ln (4)-4+C]-[2 \ln (2)-2+C] \\
& =4 \ln 4-2 \ln 2-2 \\
& =\ln 4^{3}-2
\end{aligned}
$$

