9. [10 points] For each of the statements below, circle TRUE if the statement is always true and circle FALSE otherwise. The letters a, b and c below represent real number constants. Any ambiguous marks will be marked as incorrect. No partial credit will be given on this problem.
a. [2 points] Let $f(x)$ and $g(x)$ be continuous functions which are defined for all real numbers. If $f(x) \geq g(x)$ for all real numbers x, then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$ whenever $a<b$.

True False
b. [2 points] If a is a positive, then the function $h(x)=\frac{\ln \left(a x^{2}\right)+x}{x}$ is an antiderivative of $j(x)=\frac{2-\ln \left(a x^{2}\right)}{x^{2}}$.

True False
c. [2 points] Suppose a differentiable function $\ell(x)$ is concave down and defined for all real numbers. If $a<b$, then

$$
\frac{\ell(b)-\ell(a)}{b-a}<\ell^{\prime}(b) .
$$

True
False
d. [2 points] If $x=a$ is a critical point of a function $m(x)$, then $m^{\prime}(a)=0$.

True
False
e. [2 points] If $n(x)$ and $p(x)$ are continuous functions which are defined for all real numbers, then

$$
\int_{a}^{b}(c n(x)-p(x)) d x=c \int_{a}^{b} n(x) d x+\int_{b}^{a} p(x) d x
$$

True
False

