9. [10 points] For each of the statements below, circle TRUE if the statement is always true and circle FALSE otherwise. The letters a, b and c below represent real number constants. Any ambiguous marks will be marked as incorrect. No partial credit will be given on this problem.

a. [2 points] Let $f(x)$ and $g(x)$ be continuous functions which are defined for all real numbers. If $f(x) \geq g(x)$ for all real numbers x, then $\int_a^b f(x) \, dx \geq \int_a^b g(x) \, dx$ whenever $a < b$.

 True False

b. [2 points] If a is a positive, then the function $h(x) = \frac{\ln(ax^2) + x}{x^2}$ is an antiderivative of $j(x) = \frac{2 - \ln(ax^2)}{x^2}$.

 True False

c. [2 points] Suppose a differentiable function $\ell(x)$ is concave down and defined for all real numbers. If $a < b$, then

 $$\frac{\ell(b) - \ell(a)}{b - a} < \ell'(b).$$

 True False

d. [2 points] If $x = a$ is a critical point of a function $m(x)$, then $m'(a) = 0$.

 True False

e. [2 points] If $n(x)$ and $p(x)$ are continuous functions which are defined for all real numbers, then

 $$\int_a^b (cn(x) - p(x)) \, dx = c \int_a^b n(x) \, dx + \int_b^a p(x) \, dx$$

 True False