1. [10 points] Find a formula for a function of the form

$$
f(x)=\frac{1}{a+x+b x^{2}}
$$

which has a local minimum at $(2,1 / 2)$. Be sure to show that your function has a minimum at (2, 1/2).
Solution: A local minimum will occur when $f^{\prime}(x)=0$ or is undefined. The former is when

$$
-\frac{2 b x+1}{\left(b x^{2}+x+a\right)^{2}}=0 .
$$

The numerator is zero when $x=-\frac{1}{2 b}$, and the denominator is zero on either side of this value, when $x=-\frac{1}{2 b} \pm \frac{1}{2 b} \sqrt{1-4 a b}$. The first of these gives the local minimum we want: if we let $-\frac{1}{2 b}=2$, we have $b=-\frac{1}{4}$. This gives $f^{\prime}(x)=-\frac{-\frac{1}{2} x+1}{\left(-\frac{1}{4} x^{2}+x+a\right)^{2}}$, so that if $x<2$ we have $f^{\prime}(x)<0$, and if $x>2, f^{\prime}(x)>0$. Thus if $b=-\frac{1}{4}, x=2$ is a local minimum. To require that the minimum occur at $(2,1 / 2)$, we want $f(2)=\frac{1}{a+2-1}=1 / 2$, so that $a=1$.

