2. [13 points] A rain gutter attaches to the edge of a roof and collects the rain that falls on the roof. A common gutter design is shown in the figure to the right, and has a trapezoidal cross-section (also shown). In this problem we consider a gutter with base and side length 9 cm , as shown.
a. [1 point] Write an equation which relates the length x to the
 height h.
Solution: Using the pythagorean theorem, we have $h^{2}=$ $81-x^{2}$.

b. [4 points] Using your equation from (a), write an equation for the cross-sectional area of the gutter as a function of the length x (note that the area is the sum of a rectangular and right-triangular region).

Solution: We have $A(x)=9 h+\frac{1}{2} x h=9 \sqrt{81-x^{2}}+\frac{1}{2} x \sqrt{81-x^{2}}$.
c. [8 points] Find the length x that gives the maximum cross-sectional area. Be sure to show work that demonstrates that you have found the maximum.
Solution: Note that the domain of interest for our area function is $0 \leq x<9$: taking $x<0$ clearly gives a smaller cross-sectional area than $x>0$, and $x=9$ is clearly the largest value x can take (and the cross-sectional area goes to zero for $x=9$). To find the maximum we first locate critical points. These are where $A^{\prime}(x)=0$ or is undefined. This gives

$$
A^{\prime}(x)=-\frac{9 x}{\sqrt{81-x^{2}}}+\frac{1}{2} \sqrt{81-x^{2}}-\frac{1}{2} \frac{x^{2}}{\sqrt{81-x^{2}}}=0 .
$$

The value $x=9$ lies outside our domain, so we need not worry about the derivative being undefined there. Multiplying through by $\sqrt{81-x^{2}}$, we have $-x^{2}-9 x+\frac{81}{2}=0$. Thus, using the quadratic formula, critical points are where $x=-\frac{9}{2} \pm \frac{1}{2} \sqrt{3(81)}$.
We want a positive value of x, so take $x=x_{c}=\frac{9}{2}(\sqrt{3}-1) \approx 3.294$. We can see from the derivative (which is a downward opening parabola divided by a positive square root) that this positive critical point must have A^{\prime} going from positive to negative, and is thus a maximum. As the only critical point on the domain, $x=x_{c}$ must also be the global maximum.
Alternately, we can check the sign of A^{\prime} on either side of $x_{c}: A^{\prime}(0)=9 / 2>0$ and $A^{\prime}(4) \approx-1.43<0$. The second derivative test will also work, but the evaluation is more difficult.

