- 4. [12 points] Suppose $P(\theta)$ is the power, in kilojoules per hour (kJ/h), produced by a solar panel when the angle between the sun and the panel is θ , measured in degrees. Suppose C(t) is the power, in kJ/h, produced by the solar panel t hours after sunrise on a typical summer day. Give practical interpretations of the following.
 - **a**. [4 points] P'(30) = 9.

Solution: If the angle between the sun and the panel changes from 30 to 31 degrees, the power output of the panel increases by about 9 kJ/h.

b. [4 points] $\int_0^2 C(t) dt = 270.$

Solution: In the two hours after sunrise on a typical summer day, the solar panel produces 270 kJ of energy.

c. [4 points]
$$\frac{1}{12} \int_0^{12} C(k) \, dk = 288.$$

Solution: In the first twelve hours after sunrise on a typical summer day, the average power output of the panel is 288 kJ/h.