4. [12 points] Suppose $P(\theta)$ is the power, in kilojoules per hour (kJ/h), produced by a solar panel when the angle between the sun and the panel is θ, measured in degrees. Suppose $C(t)$ is the power, in kJ / h, produced by the solar panel t hours after sunrise on a typical summer day. Give practical interpretations of the following.
a. $[4$ points $] P^{\prime}(30)=9$.

Solution: If the angle between the sun and the panel changes from 30 to 31 degrees, the power output of the panel increases by about $9 \mathrm{~kJ} / \mathrm{h}$.
b. [4 points] $\int_{0}^{2} C(t) d t=270$.

Solution: In the two hours after sunrise on a typical summer day, the solar panel produces 270 kJ of energy.
c. [4 points] $\frac{1}{12} \int_{0}^{12} C(k) d k=288$.

Solution: In the first twelve hours after sunrise on a typical summer day, the average power output of the panel is $288 \mathrm{~kJ} / \mathrm{h}$.

