8. [14 points] A car speeds up at a constant rate from 10 to 70 mph over a period of half an hour, between $t=0$ and $t=1 / 2$. Its fuel efficiency, $E(v)$, measured in miles per gallon, depends on its speed, v, measured in miles per hour.
a. [4 points] Write an integral which gives the total distance traveled by the car during the half hour.
Solution: The total distance traveled by the car during the half hour is

$$
\int_{0}^{1 / 2} v(t) d t
$$

b. [5 points] Write an integral which gives the average fuel efficiency of the car during the half hour.
Solution: The average fuel efficiency of the car during the half hour is

$$
\frac{1}{60} \int_{10}^{70} E(v) d v
$$

Or, in terms of t, the integral

$$
\frac{1}{1 / 2} \int_{0}^{1 / 2} E(v(t)) d t
$$

is equivalent.
c. [5 points] For speeds v greater than 70 mph suppose the relationship between E and v is given by

$$
E(v)=2+v^{-a v}
$$

for some constant a. Using this formula, write an expression for the definition of the derivative $E^{\prime}(82)$. Do not evaluate your expression.
Solution: The derivative of E at $v=82$ is

$$
E^{\prime}(82)=\lim _{h \rightarrow 0} \frac{\left(2+(82+h)^{-(82+h) a}\right)-\left(2+82^{-82 a}\right)}{h} .
$$

