9. [10 points] For each of the statements below, circle TRUE if the statement is always true and circle FALSE otherwise. The letters \(a, b \) and \(c \) below represent real number constants. Any ambiguous marks will be marked as incorrect. No partial credit will be given on this problem.

a. [2 points] Let \(f(x) \) and \(g(x) \) be continuous functions which are defined for all real numbers. If \(f(x) \geq g(x) \) for all real numbers \(x \), then \(\int_a^b f(x) \, dx \geq \int_a^b g(x) \, dx \) whenever \(a < b \).

[] True [] False

b. [2 points] If \(a \) is a positive, then the function \(h(x) = \frac{\ln(ax^2)+x}{x^2} \) is an antiderivative of \(j(x) = \frac{2-\ln(ax^2)}{x^2} \).

[] True [] False

c. [2 points] Suppose a differentiable function \(\ell(x) \) is concave down and defined for all real numbers. If \(a < b \), then
\[
\frac{\ell(b) - \ell(a)}{b - a} < \ell'(b).
\]

[] True [] False

d. [2 points] If \(x = a \) is a critical point of a function \(m(x) \), then \(m'(a) = 0 \).

[] True [] False

e. [2 points] If \(n(x) \) and \(p(x) \) are continuous functions which are defined for all real numbers, then
\[
\int_a^b \left(c n(x) - p(x) \right) \, dx = c \int_a^b n(x) \, dx + \int_b^a p(x) \, dx
\]

[] True [] False