5. [12 points] A rectangle has one side on the x-axis and two vertices on the curve

$$
y=\frac{36}{9+x^{2}} .
$$

This curve is graphed below. Find the x - and y-coordinates of all four vertices of the rectangle with largest area. You must show that your vertices maximize the area of the rectangle.

Solution: The area of such a rectangle, if its lower-right corner is at $(x, 0)$, is

$$
A=2 x\left(\frac{36}{9+x^{2}}\right)=\frac{72 x}{9+x^{2}} .
$$

Differentiating this gives

$$
\frac{d A}{d x}=\frac{\left(9+x^{2}\right) 72-72 x(2 x)}{\left(9+x^{2}\right)^{2}}=\frac{648-72 x^{2}}{\left(9+x^{2}\right)^{2}},
$$

so there is a critical point where the numerator is zero, which is

$$
x=3 .
$$

We can verify using the first derivative test that this is a local maximum (for example, by noticing that $d A / d x$ is positive at $x=0$ and negative at $x=4$), and since it is the only critical point on the domain $(0, \infty)$ we are considering, it must be the global maximum. Plugging into the equation for the curve shows that $y=2$ when $x=3$. Therefore, the four vertices of the rectangle are

$$
(\pm 3,2),(\pm 3,0)
$$

