8. [13 points] Use the family of functions of the form

$$
f(x)=a x-\ln \left(1+e^{b x}\right)
$$

to answer the following questions. The constants a and b are both positive.
a. [4 points] Use the given formula for $f(x)$ to give an explicit expression for the limit definition of $f^{\prime}(x)$. Check your expression carefully, as no partial credit will be given on this part of the problem. Do not evaluate your expression.
Solution:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{a(x+h)-\ln \left(1+e^{b(x+h)}\right)-a x+\ln \left(1+e^{b x}\right)}{h} .
$$

b. [4 points] Compute $f^{\prime}(x)$ using the rules of differentiation. Do not try to evaluate your expression from (a).
Solution:

$$
f^{\prime}(x)=a-\frac{b e^{b x}}{1+e^{b x}}
$$

c. [5 points] When $a<b$, the function $f(x)$ has a critical point at

$$
x=\frac{1}{b} \ln \left(\frac{a}{b-a}\right) .
$$

Using the second-derivative test, determine whether this critical point is a local maximum, local minimum, or neither.
Solution: The second derivative is

$$
f^{\prime \prime}(x)=-\frac{\left(1+e^{b x}\right) b^{2} e^{b x}-b e^{b x} b e^{b x}}{\left(1+e^{b x}\right)^{2}}=-\frac{b^{2} e^{b x}}{\left(1+e^{b x}\right)^{2}} .
$$

This is always negative, so the critical point is a local maximum.

