8. [12 points] Mitch puts a thin metal ring in an oven. A picture of the ring, which is made by removing a solid metal circular region of radius Q cm from a solid metal circular region of radius R cm, is below. The circles have the same center.

The ring expands as the temperature gets hotter, and so R and Q are each functions of the time, t, measured in minutes since Mitch put the ring into the oven. The following table gives some values for the functions R and Q, as well as their derivatives.

t	19	20	21
R(t)	1.95	2	2.06
Q(t)	1.8	1.75	1.68
R'(t)	.04	.05	.05
Q'(t)	06	06	04

a. [2 points] Assuming that R(t) is an invertible function, compute

 $(R^{-1})'(2.06).$

Do not give an approximation.

b. [2 points] Compute the exact value of

$$\int_{19}^{21} Q'(t)dt.$$

Do not give an approximation.

8. (continued)

The figure and table below are reproduced from the previous page, in case you need them on this page.

c. [2 points] Write an expression for A(t), the area of the ring t minutes after Mitch put it in the oven, in terms of R(t) and Q(t).

d. [6 points] How fast is the area of the ring growing 20 minutes after Mitch puts the ring in the oven? Include units in your answer.