9. [15 points] For each question below, there is only one correct answer. Circle exactly one answer. Unclear answers will receive no credit. There is no penalty for guessing.
a. [3 points] A company's maximum profit is earned when it produces $q=20$ goods. If its marginal cost function is given by

$$
M C(q)=7 q,
$$

which of the following could be the company's revenue function?
A. $R(q)=q+120$
B. $R(q)=7$
C. $R(q)=q^{7}+2$
D. $R(q)=2 q^{2}+60 q$
E. $R(q)=\frac{1}{20} q^{7}+2$
b. [3 points] The number ℓ is a positive constant. Which of the following numbers is the maximum value of the function $f(x)=(x-\ell)^{3}+12 \ell^{3}$ on the closed interval $[-\ell, 2 \ell]$? (These numbers are y-values, not x-values).
A. $11 \ell^{3}$
B. $20 \ell^{3}$
C. $13 \ell^{3}$
D. $4 \ell^{3}$
E. $12 \ell^{3}$
c. [3 points] The number p is a constant. Which of the following functions is an antiderivative of $g(x)=\ln (x+p)$?
A. $G(x)=\frac{p}{x+p}$
B. $G(x)=\frac{1}{x+p}$
C. $G(x)=(x+p)(\ln (x+p))-x$
D. $G(x)=\frac{\ln (x+p)}{p}-x$
E. $G(x)=x^{2} \ln (x+p)-x$
d. [3 points] Suppose $g^{\prime}(x)>0$ on the interval $[3,5], g(3)=12$, and $g(5)=20$. We want to use a Riemann sum with equal-size subdivisions to approximate

$$
\int_{3}^{5} g(x) d x
$$

If we want to guarantee that the error in our estimate is no larger than $1 / 4$, then what is the minimum number of subdivisions that we must use?
A. 8
B. 16
C. 32
D. 64
E. We cannot guarantee this much accuracy, no matter how many subdivisions we use.
e. [3 points] If

$$
\int_{-1}^{4}(2 f(x)-7) d x=-31,
$$

then which of the following values is equal to

$$
\int_{-1}^{4} f(x) d x ?
$$

A. -24
B. -12
C. 2
D. 4
E. 31

