5. [15 points] The function $h(x)$ is not known, but the derivative of $h(x)$ is given by the formula

$$
h^{\prime}(x)=\sin (x) e^{x^{2}+1} .
$$

a. [2 points] Find a formula for $h^{\prime \prime}(x)$.

Solution:

$$
h^{\prime}(x)=\cos (x) e^{x^{2}+1}+2 x \sin (x) e^{x^{2}+1}
$$

b. [6 points] List all critical points for $h(x)$ in the open interval $-2 \pi<x<2 \pi$. For each point, use an appropriate test to determine whether it is a local maximum, local minimum, or neither.

Solution: A critical point of $h(x)$ occurs when $h^{\prime}(x)=0$. Since $e^{x^{2}+1} \neq 0$, this is when $\sin (x)=0$, so $x=-\pi, 0, \pi$. Plugging these values into the second derivative gives

x	$g^{\prime \prime}(x)$
$-\pi$	$-e^{-\pi^{2}+1}<0$
0	$e>0$
π	$-e^{-\pi^{2}+1}<0$

So $x=-\pi$ is a local maximum, $x=0$ is a local minimum, and $x=\pi$ is a local maximum.
c. [2 points] For which x-value in the closed interval $\frac{\pi}{4} \leq x \leq \frac{\pi}{2}$ does $h(x)$ attain its maximum value? (Do not try to find the y-coordinate.)
Solution: The function $h^{\prime}(x)$ is non-negative in this interval. Therefore $h(x)$ is increasing and attains its maximum value at the right endpoint $x=\frac{\pi}{2}$.
d. [5 points] Write out all terms for a right-hand Riemann sum with three subintervals which approximates

$$
\int_{0}^{1} \sin (x) e^{x^{2}+1} d x .
$$

Solution:

$$
\frac{1}{3}\left(\sin \left(\frac{1}{3}\right) e^{\left(\frac{1}{3}\right)^{2}+1}+\sin \left(\frac{2}{3}\right) e^{\left(\frac{2}{3}\right)^{2}+1}+\sin (1) e^{2}\right)
$$

