8. [12 points] Mitch puts a thin metal ring in an oven. A picture of the ring, which is made by removing a solid metal circular region of radius $Q \mathrm{~cm}$ from a solid metal circular region of radius $R \mathrm{~cm}$, is below. The circles have the same center.

The ring expands as the temperature gets hotter, and so R and Q are each functions of the time, t, measured in minutes since Mitch put the ring into the oven. The following table gives some values for the functions R and Q, as well as their derivatives.

t	19	20	21
$R(t)$	1.95	2	2.06
$Q(t)$	1.8	1.75	1.68
$R^{\prime}(t)$.04	.05	.05
$Q^{\prime}(t)$	-.06	-.06	-.04

a. [2 points] Assuming that $R(t)$ is an invertible function, compute

$$
\left(R^{-1}\right)^{\prime}(2.06)
$$

Do not give an approximation.
Solution: We have

$$
\left(R^{-1}\right)^{\prime}(2.06)=\frac{1}{R^{\prime}\left(R^{-1}(2.06)\right)}=\frac{1}{.05}=20 \text { minutes } / \mathrm{cm}
$$

b. [2 points] Compute the exact value of

$$
\int_{19}^{21} Q^{\prime}(t) d t
$$

Do not give an approximation.
Solution: By the fundamental theorem of calculus $\int_{19}^{21} Q^{\prime}(t) d t=Q(21)-Q(19)=-.12$
8. (continued)

The figure and table below are reproduced from the previous page, in case you need them on this page.

t	19	20	21
$R(t)$	1.95	2	2.06
$Q(t)$	1.8	1.75	1.68
$R^{\prime}(t)$.04	.05	.05
$Q^{\prime}(t)$	-.06	-.06	-.04

c. [2 points] Write an expression for $A(t)$, the area of the ring t minutes after Mitch put it in the oven, in terms of $R(t)$ and $Q(t)$.
Solution:

$$
A(t)=\pi(R(t))^{2}-\pi(Q(t))^{2}
$$

d. [6 points] How fast is the area of the ring growing 20 minutes after Mitch puts the ring in the oven? Include units in your answer.

Solution: By the chain rule,

$$
A^{\prime}(t)=2 \pi R(t) R^{\prime}(t)-2 \pi Q(t) Q^{\prime}(t)
$$

so

$$
A^{\prime}(20)=2 \pi * 2 * .05-2 \pi * 1.75 *(-.06)=.41 \pi \frac{\mathrm{~cm}^{2}}{\min }
$$

