1. [10 points] The table below gives several values of a function $f(x)$ and its derivative. Assume that both $f(x)$ and $f^{\prime}(x)$ are defined and differentiable for all x.

x	0	1	2	3	4	5	6
$f(x)$	0	3	4	2	-1	-3	5
$f^{\prime}(x)$	4	2	-1	-5	-2	7	9
$f^{\prime \prime}(x)$	-1	-3	-5	0	4	3	1

Compute each of the following. Do not give approximations. If it is not possible to find the value exactly, write not possible
a. [2 points] Find $\int_{0}^{4} f^{\prime \prime}(x) d x$.

$$
\text { Answer: } \int_{0}^{4} f^{\prime \prime}(x) d x=
$$

\qquad
b. [2 points] Find $\int_{2}^{5}(3 f(x)+1) d x$.

Answer: $\int_{2}^{5}(3 f(x)+1) d x=$ \qquad
c. [3 points] Find the average value of $4 f^{\prime}(x)+x$ on the interval $[1,6]$.

Answer:
d. [3 points] Assuming that $f(x)$ is an odd function, find $\int_{-3}^{3} f(x) d x$ and $\int_{-3}^{3} f^{\prime}(x) d x$.

Answer: $\int_{-3}^{3} f(x) d x=\square$ and $\int_{-3}^{3} f^{\prime}(x) d x=$ \qquad

