1. [10 points] The table below gives several values of a function f(x) and its derivative. Assume that both f(x) and f'(x) are defined and differentiable for all x.

/							
x	0	1	2	3	4	5	6
f(x)	0	3	4	2	-1	-3	5
f'(x)	4	2	-1	-5	-2	7	9
f''(x)	-1	-3	-5	0	4	3	1

Compute each of the following. Do not give approximations. If it is not possible to find the value exactly, write NOT POSSIBLE

a. [2 points] Find $\int_0^4 f''(x) dx$.

b. [2 points] Find
$$\int_{2}^{5} (3f(x) + 1) dx$$
.

Answer:
$$\int_{2}^{5} (3f(x) + 1) dx =$$

c. [3 points] Find the average value of 4f'(x) + x on the interval [1,6].

Answer: ______ **d.** [3 points] Assuming that f(x) is an odd function, find $\int_{-3}^{3} f(x) dx$ and $\int_{-3}^{3} f'(x) dx$.

Answer:
$$\int_{-3}^{3} f(x) dx =$$
 _____ and $\int_{-3}^{3} f'(x) dx =$ _____
University of Michigan Department of Mathematics Winter, 2014 Math 115 Exam 3 Problem 1

Answer:
$$\int_{0}^{4} f''(x) dx =$$
